BirZeit University
Faculty of Science-Department of Physics
Quantum Mechanics Phys635
Spring 2017
Final Exam, June. 7th 2017

1. A particle of mass m moves in one-dimensionally in the oscillator potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. Calculate the relativistic correction to the first order to nth state.
2. A quantum mechanical rigid rotor constrained to rotate in one plane has moment of inertia I about its axis of rotation and electric dipole moment μ (in the plane). This rotor is placed in a weak uniform electric field ε, which is in the plane of rotation. Treating the electric field as a perturbation, find the first non-vanishing corrections to the energy levels of the rotor.
3. Consider a one-dimensional simple harmonic oscillator whose classical angular frequency is ω_{0}. For $\mathrm{t}<0$ it is known to be in the ground state. For $\mathrm{t}>0$ there is also a time-dependent potential $V(t)=F_{0} x \cos (w t)$, where F_{0} is constant in both space and time. Obtain an expression for the expectation value $\langle x\rangle$ as a function of time using time-dependent perturbation theory to the second non-vanishing order.
4. The coherent states are defined to be an eigenvector of the annihilation operator.

$$
a|\alpha>=\alpha| \alpha>
$$

(a) Show that $\mid \alpha>$ can be written as:

$$
\left|\alpha>=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}\right| n>
$$

(b) If we define a state defined by the creation operator, will it be physical. Why or why not?

$$
a^{\dagger}|\alpha>=\alpha| \alpha>
$$

5. A spin $3 / 2$ particle is placed in a uniform magnetic field pointing in the Z-direction. If at $\mathrm{t}=0$, the x -component of the particle was measured and found to be $\frac{1}{2}$.
(a) Write the wave function at any later time t.
(b) At what times if S_{z} is measured we will get $+3 / 2$
(c) Write a rotation matrix that can describe the physical situation.
6. Show that for harmonic oscillator that the eigenvalues of the number operator \hat{N} are positive integers or zero.

Good Luck

\because

